Recitation 8: Higher Order ODE

Lecturer: Chenlin Gu

Exercise 1. Transform the given equation into a system of first-order equations.

1. $u^{\prime \prime}+\frac{1}{2} u^{\prime}+2 u=0$.
2. $t^{2} u^{\prime \prime}+t u^{\prime}+\left(t^{2}-\frac{1}{4}\right) u=0$.
3. $u^{(4)}-u=0$.

Exercise 2. For the linear system $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$, write down its Wronskian $W(t)$ in function of $W\left(t_{0}\right)$ and P .

Exercise 3. Let $\mathbf{x}^{(1)}(t), \mathbf{x}^{(2)}(t) \cdots \mathbf{x}^{(n)}(t)$ be vector functions whose i-th components (for some fixed i) $x^{(1)}(t), x^{(2)}(t) \cdots x^{(n)}(t)$ are linearly independent functions on interval (a, b). Conclude that the vector functions are themselves linearly independent on the interval (a, b).

Exercise 4. Show that the general solution of $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{g}(t)$ is the sum of any particular solution \mathbf{x}^{p} of this equation and a general solution \mathbf{x}^{c} of the corresponding homogeneous equation.

Exercise 5. The Lotka-Volterra equations, also known as the predator-prey equations, are a pair of first-order nonlinear differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time according to the pair of equations:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=\alpha x-\beta x y, \\
\frac{d y}{d t}=\delta x y-\gamma y .
\end{array}\right.
$$

Here x is the number of prey (for example, rabbits); y is the number of some predator (for example, foxes) and $\alpha, \beta, \delta, \gamma$ are positive parameters. Interpreter this mathematical model in a concrete context.

